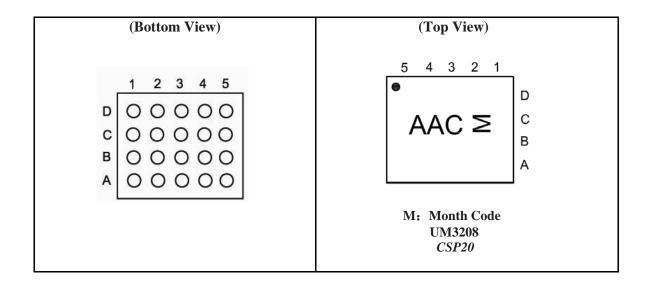


8-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Application UM3208 CSP20

General Description

The UM3208 is $\pm 15 \text{kV}$ 8-channel ESD-protected level translator provide the level shifting necessary to allow data transfer in a multi-voltage system. Externally applied voltages, V_{CCB} and V_{CCA} , set the logic levels on either side of the device. A low-voltage logic signal present on the V_{CCA} side of the device appears as a high-voltage logic signal on the V_{CCB} side of the device, and vice-versa. The UM3208 bidirectional level translator utilizes a transmission-gate based design to allow data translation in either direction ($V_{CCA} \leftrightarrow V_{CCB}$) on any single data line. The UM3208 accepts V_{CCA} from +1.65V to +3.6V and V_{CCB} from +2.3V to +5.5V, making it ideal for data transfer between low-voltage ASICs / PLDs and higher voltage systems.

The UM3208 enters a three-state output mode to reduce supply current when output enable (OE) is low. The UM3208 is designed so that the OE input circuit is supplied by V_{CCA} . $\pm 15 kV$ ESD protection on the V_{CCB} side for greater protection in applications that route signals externally. The UM3208 is a 8-channel level translator available in 3.0×2.5 CSP20 bump package.


Applications

- SPI, MICROWIRE, and I²C Level Translation
- Low-Voltage ASIC Level Translation
- Smart Card Readers
- Cell-phone Cradles
- Portable POS Systems
- Portable Communication Devices
- Low-Cost Serial Interfaces
- Cell-Phones
- GPS
- Telecommunications Equipment

Features

- Max Data Rates: 24Mbps(Push Pull), 2Mbps(Open Drain)
- Bidirectional Level Translation
- 1.65V to 3.6V on A port and 2.3V to 5.5V on B port($V_{CCA} \le V_{CCB}$)
- ±15kV ESD Protection on B port
- No Power-Supply Sequencing Required V_{CCA} or V_{CCB} Can Be Ramped First
- CSP20 bump Package

Pin Configurations

Terminal Assignments

	1	2	3	4	5
D	V_{CCB}	B2	B4	В6	B8
С	B1	В3	B5	В7	GND
В	A1	A3	A5	A7	OE
A	V_{CCA}	A2	A4	A6	A8

Pin Description

Pin Name	Function
A1	Input/Output 1. Referenced to V _{CCA}
V_{CCA}	A-Port supply voltage. $1.65V \le V_{CCA} \le 3.6V$ and $V_{CCA} \le V_{CCB}$
A2	Input/Output 2. Referenced to V _{CCA}
A3	Input/Output 3. Referenced to V _{CCA}
A4	Input/Output 4. Referenced to V _{CCA}
A5	Input/Output 5. Referenced to V _{CCA}
A6	Input/Output 6. Referenced to V _{CCA}
A7	Input/Output 7. Referenced to V _{CCA}
A8	Input/Output 8. Referenced to V _{CCA}
OE	3-state output enable. Pull OE low to place all outputs in 3-state mode.
OL	Referenced to V _{CCA}
GND	Ground
B8	Input/Output 8. Referenced to V _{CCB}
B7	Input/Output 7. Referenced to V _{CCB}
В6	Input/Output 6. Referenced to V _{CCB}
B5	Input/Output 5. Referenced to V _{CCB}
B4	Input/Output 4. Referenced to V _{CCB}
B3	Input/Output 3. Referenced to V _{CCB}
B2	Input/Output 2. Referenced to V _{CCB}
V_{CCB}	B-Port supply voltage. 2.3V\(\subseteq V_{CCB} \leq 5.5V\)
B1	Input/Output 1. Referenced to V _{CCB}

Ordering Information

Part Number	Packaging Type	Marking Code	Shipping Qty
UM3208	CSP20	AAC	2500pcs/7Inch Tape & Reel

Absolute Maximum Ratings (Note 1)

Over operating free-air temperature range (unless otherwise noted)

Symbol	Parameter		Value	Unit
V_{CCA}	Supply Voltage Range		-0.5 to +4.5	V
V_{CCB}	Supply Voltage Range		-0.5 to +6.5	V
$V_{\rm I}$	Input Voltage Range	A ports	-0.5 to +4.5	V
V I	input voitage Kange	B ports	-0.5 to +6.5	V
V	Voltage Range applied to any output in	A ports	-0.5 to +4.5	V
V_{O}	the high-impedance or power-off state	B ports	-0.5 to +6.5	V
V	Voltage Range applied to any output in	A ports	-0.5 to (V _{CCA} +0.5)	V
V_{O}	the high or low state (Note 2)	B ports	-0.5 to (V _{CCB} +0.5)	V
I_{IK}	Input Clamp Current	$V_I < 0$	-50	mA
I_{OK}	Output Clamp Current	$V_0 < 0$	-50	mA
I_{O}	Continuous Output Current		±50	mA
	Continuous Current through V _{CCA} , V _{CCB} ,	±100	mA	
T_{OP}	Operating Temperature Range	-40 to +85	°C	
T_{STG}	Storage Temperature Range		-65 to +150	°C

Note1. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Note2. The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

Recommended Operating Conditions (Note 1, 2)

Symbol	Parameter		V _{CCA}	V_{CCB}	Min	Max	Unit	
V_{CCA}	Supply Voltag	70			1.65	3.6	V	
V_{CCB}	Supply Voltag	36			2.3	5.5	V	
		A- Port	1.65V to 1.95V	2.3V to 5.5V	V _{CCI} -0.2	V_{CCI}		
$V_{ m IH}$	High Level Input Voltage	A- roit	2.3V to3.6V	2.3 V 10 3.3 V	V _{CCI} -0.4	V_{CCI}		
V IH	Trigii Level input voltage	B- Port	1.65V to 3.6V	2.3V to 5.5V	V _{CCI} -0.4	V_{CCI}	V	
		OE	1.03 V 10 3.0 V	2.3 V 10 3.3 V	$V_{CCA} \times 0.65$	5.5	V	
		A- Port			0	0.15		
$V_{\rm IL}$	Low Level Input Voltage	B- Port	1.65V to 3.6V	2.3V to 5.5V	0	0.15	V	
		OE			0	$V_{CCA} \times 0.35$	V	
		A-Port push-pull driving				10		
Δt/Δv	Input Transition Rise or Fall Time	B-Port push-pull driving	1.65V to 3.6V	2.3V to 5.5V		10	ns/V	
		Control input				10	1	

Note 1. V_{CCI} is the supply voltage associated with the input port.

Note2. V_{CCA} must be less than or equal to V_{CCB} and must not exceed 3.6 V.

Electrical Characteristics (Note 1, 2, 3)

Over recommended operating free-air temperature range (unless otherwise noted)

Parameter	Test Conditions	V 7	**/	$T_A =$	25℃	-40℃ to	85℃	Unit
rarameter	Test Conditions	$\mathbf{V}_{\mathbf{CCA}}$	V_{CCB}	Тур	Max	Min	Max	Omt
V_{OHA}	I_{OH} =-20 μ A	1.65V to 3.6V	2.3V to 5.5V			$V_{CCA} \times 0.8$		V
V_{OLA}	I _{OL} =1mA	1.65V to 3.6V	2.3V to 5.5V				0.4	V
V_{OHB}	I_{OH} =-20 μ A	1.65V to 3.6V	2.3V to 5.5V			$V_{CCB} \times 0.8$		V
V_{OLB}	I _{OL} =1mA	1.65V to 3.6V	2.3V to 5.5V				0.4	V
I _I OE	V _I =V _{CCI} or GND	1.65V to 3.6V	2.3V to 5.5V		±1		±2	μA
I _{OZ} A or B Port	$OE=V_{IL}$	1.65V to 3.6V	2.3V to 5.5V		±1		±2	μA
	V-V	1.65V to V _{CCB}	2.3V to 5.5V				2.4	
I_{CCA}	$V_I = V_O = open,$ $I_O = 0$	3.6V	0V				2.2	μA
	10-0	0V	5.5V				-1	
	V-V -onon	1.65V to V _{CCB}	2.3V to 5.5V				12	
I_{CCB}	$V_I = V_O = open,$ $I_O = 0$	3.6V	0V				-1	μA
	10-0	0V	5.5V				1	
$I_{CCA} + I_{CCB}$	$V_I = V_O = open,$ $I_O = 0$	1.65V to 3.6V	2.3V to 5.5V				14.4	μA
C _i OE		3.3V	3.3V	2.5			3.5	pF
A Port		3.3V	3.3V	5	•		6.5	ъE
C _{iO} B Port		3.3 V	3.3 V	12	•		16.5	pF

Note1. V_{CCI} is the supply voltage associated with the input port. Note2. V_{CCO} is the supply voltage associated with the output port. Note3. V_{CCA} must be less than or equal to V_{CCB} and must not exceed 3.6 V.

Timing Requirements

Over recommended operating free-air temperature range, V_{CCA} = 1.8 $V \pm 0.15V$ (unless otherwise noted)

				2.5V±	$V_{\text{CCB}}=3.3\text{V}$		$V_{CCB}=5V\pm$		Unit
			0	0.2V		$\pm 0.3V$		0.5V	
			Min	Max	Min	Max	Min	Max	
Data Rate	Push-pull driving			24		24		24	Mbps
Data Kate	Open-drain driv		2		2		2	Mops	
tw Pulse	Push-pull driving	Data	41		41		41		ng
duration	Open-drain driving	inputs	500		500		500		ns

Timing Requirements

Over recommended operating free-air temperature range, $V_{\text{CCA}} = 2.5 \text{V} \pm 0.2 \text{V}$ (unless otherwise noted)

	1 0	1		· CCA =··					
				$2.5V\pm$	$V_{CCB}=3.3V$		$V_{CCB}=5V\pm$		
				2V	$\pm 0.3 V$		0.5V		Unit
			Min	Max	Min	Max	Min	Max	
Data Rate	Push-pull drivi		24		24		24	Mbps	
Data Kate	Open-drain driv		2		2		2	Mops	
t _w Pulse	Push-pull driving	Data	41		41	•	41		nc
duration	Open-drain driving	inputs	500		500		500		ns

Timing Requirements

Over recommended operating free-air temperature range, V_{CCA} = 3.3V \pm 0.3V (unless otherwise noted)

	memata operating nee an tempe	g-) - CCA		. (
				=3.3V		$=5V\pm$	
		± 0	.3V	0.5V		Unit	
			Min	Max	Min	Max	
Data Rate	Push-pull dri	ving		24		24	Mbps
Data Kate	Open-drain dr		2		2	Midps	
tw Pulse	Push-pull driving	Data innuta	41		41		na
duration	Open-drain driving	Data inputs	500		500		ns

Switching Characteristics

Over recommended operating free-air temperature range, V_{CCA} = 1.8 $V \pm 0.15V$ (unless otherwise noted)

O VOI TOOMI	menaca o	perating nee	an temperature							notea
Paramete	From	То	Test		=2.5V		=3.3V		$=5V\pm$	
r	(Input)	(Output)	Conditions	± 0	.2V	± 0).3V		5V	Unit
1	(Iliput)	(Output)		Min	Max	Min	Max	Min	Max	
+			Push-pull		4.6		4.7		5.8	
$t_{ m PHL}$	A	В	Open-drain	2.9	8.8	2.9	9.6	3	10	ns
t _{ny yy}	Λ	Б	Push-pull		6.8		6.8		7	113
$t_{\rm PLH}$			Open-drain	45	260	36	208	27	198	
+			Push-pull		4.4		4.5		4.7	
$t_{ m PHL}$	В	A	Open-drain	1.9	5.3	1.1	4.4	1.2	4	ns
+	Б	A	Push-pull		5.3		4.5		0.5	115
t_{PLH}			Open-drain	45	175	36	140	27	102	
+	OE	A			200		200		200	na
t_{en}	OE	В			200		200		200	ns
+	OE	A			50		40		35	ns
$t_{ m dis}$	OE	В			50		40		35	115
t .	A port	rise time	Push-pull	3.2	9.5	2.3	9.3	2	7.6	ns
t_{rA}	A port	TISC tillic	Open-drain	38	165	30	132	22	95	115
t _	R nort	rise time	Push-pull	4	10.8	2.7	9.1	2.7	7.6	ns
$t_{\rm rB}$	D port	risc time	Open-drain	34	145	23	106	10	58	115
t.	A nort	fall time	Push-pull	2	5.9	1.9	6	1.7	13.3	ns
t_{fA}	A port	Tail tillic	Open-drain	4.4	6.9	4.3	6.4	4.2	6.1	115
t_	R port	fall time	Push-pull	2.9	7.6	2.8	7.5	2.8	8.8	ns
$t_{ m fB}$	D port	Tall tillic	Open-drain	6.9	13.8	7.5	16.2	7	16.2	115
$t_{ m SK(O)}$	Channel	-to-channe			1		1		1	ns
		1								113
Max data			Push-pull		24		24		24	
rate			Open-drain		2		2		2	Mbps

Switching Characteristics

Over recommended operating free-air temperature range, V_{CCA} = 2.5V \pm 0.2V (unless otherwise noted)

	memaca op	crating nee a	ii temperature ra							<u> </u>
Paramete	From	То	Test		=2.5V		=3.3V		$=5V\pm$	
r	(Input)	(Output)	Conditions	± 0).2V	± 0).3V	0.:	5V	Unit
1	(Input)	(Output)		Min	Max	Min	Max	Min	Max	
+			Push-pull		3.2		3.3		3.4	
$t_{ m PHL}$	A	В	Open-drain	1.7	6.3	2	6	2.1	5.8	ns
+	Α	Б	Push-pull		3.5		4.1		4.4	115
t_{PLH}			Open-drain	43	250	36	206	27	190	
+			Push-pull		3		3.6		4.3	
$t_{\mathtt{PHL}}$	В	A	Open-drain	1.8	4.7	2.6	4.2	1.2	4	na
+	Б	A	Push-pull		2.5		1.6		0.7	ns
$t_{ m PLH}$			Open-drain	44	170	37	140	27	103	
4	OE	A			200		200		200	***
t_{en}	OE	В			200		200		200	ns
+	OE	A			50		40		35	na
$t_{ m dis}$	OE	В			50		40		35	ns
+	A port	rise time	Push-pull	2.8	7.4	2.6	6.6	1.8	5.6	ns
t_{rA}	A port	rise time	Open-drain	34	149	28	121	24	89	115
+	P nort	rise time	Push-pull	3.2	8.3	2.9	7.2	2.4	6.1	ns
$t_{ m rB}$	B port	rise time	Open-drain	35	151	24	112	12	64	118
4.	A nort	fall time	Push-pull	1.9	5.7	1.9	5.5	1.8	5.3	na
t_{fA}	A port	i fair tillie	Open-drain	4.4	6.9	4.3	6.2	4.2	5.8	ns
4.	P nort	fall time	Push-pull	2.2	7.8	2.4	6.7	2.6	6.6	na
${ m t_{fB}}$	ь рог	Tall tille	Open-drain	5.1	8.8	5.4	9.4	5.4	10.4	ns
+	Channel	-to-channe			1	_	1	_	1	na
$t_{SK(O)}$		1			1		1		1	ns
Max data			Push-pull	24		24		24		
rate			Open-drain	2		2		2		Mbps

Switching Characteristics

Over recommended operating free-air temperature range, V_{CCA} = 3.3V \pm 0.3V (unless otherwise noted)

Paramete r	From (Input)	To (Output)	Test Conditions		=3.3V 0.3V Max	V _{CCB} = 0.: Min	=5V± 5V Max	Unit
			Push-pull	IVIIII	2.4	IVIIII	3.1	
t_{PHL}			Open-drain	1.2	4.2	1.4	4.6	
	Α	В	Push-pull	1.2	4.2	1.1	4.4	ns
$t_{ m PLH}$			Open-drain	36	204	28	165	
,			Push-pull		2.5		3.3	
$t_{\mathtt{PHL}}$	D		Open-drain	1	124	1	97	
,	В	A	Push-pull		2.5		2.6	ns
$t_{ m PLH}$			Open-drain	3	139	3	105	
4	OF	A	•		200		200	
$t_{\rm en}$	OE	В			200		200	ns
4	OE	A			40		35	
$t_{ m dis}$	OE	В			40		35	ns
+	A noi	rt riga tima	Push-pull	2.3	5.6	1.9	4.8	ng
t_{rA}	A po	rt rise time	Open-drain	25	116	19	85	ns
+	D not	rt rise time	Push-pull	2.5	6.4	2.1	7.4	ne
$t_{ m rB}$	Б ро	it rise tillle	Open-drain	26	116	14	72	ns
4.	A no	rt fall time	Push-pull	2	5.4	1.9	5	ns
$t_{ m fA}$	A po	it iaii tiiiie	Open-drain	4.3	6.1	4.2	5.7	115
ton	Rpo	rt fall time	Push-pull	2.3	7.4	2.4	7.6	ns
$t_{ m fB}$	ъ ро	it iaii tiilie	Open-drain	5	7.6	4.8	8.3	115
$t_{SK(O)}$	Channe	el-to-channel			1		1	ns
Max data			Push-pull	24		24		
rate			Open-drain	2		2		Mbps

Applications Information

The UM3208 can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The UM3208 is ideal for use in application where an open-drain driver is connected to the data I/Os. The UM3208 can also be used in applications where a push-pull driver is connected to the data I/Os, but the UM3308 might be a better option for such push-pull applications.

Block Diagram

The UM3208 (block diagram see Figure 1) does not require a direction-control signal to control the direction of data flow from A to B or from B to A. Each A-port I/O has an internal $10\text{-k}\Omega$ pull-up resistor to V_{CCA} , and each B-port I/O has an internal $10\text{-k}\Omega$ pull-up resistor to V_{CCB} . During a rising edge, the one-shot turns on the PMOS transistors (PU1, PU2) for a short duration, which speeds up the low-to-high transition.

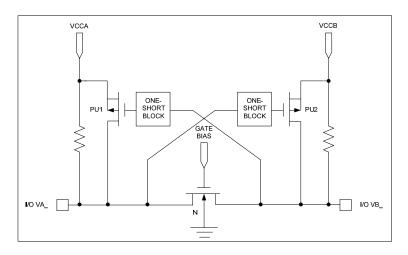


Figure 1 Block Diagram of UM3208 I/O Cell

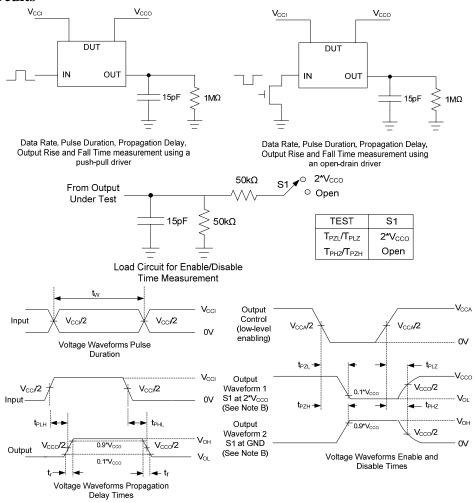
Input Driver Requirements

The fall time (t_{fA} , t_{fB}) of a signal depends on the output impedance of the external device driving the data I/Os of the UM3208. Similarly, the t_{PHL} and the maximum date rates also depend on the output impedance of the external driver. The values for t_{fA} , t_{fB} , t_{PHL} , and the maximum date rates in the data sheet assume that the output impedance of the external driver is less than 50Ω .

Power Up

During operation, ensure that $V_{CCA} \le V_{CCB}$ at all times. During power-up sequencing, $V_{CCA} \ge V_{CCB}$ does not damage the device, so any power supply can be ramped up first.

Enable and Disable


The UM3208 has an OE input that is used to disable the device by setting OE = low, which places all I/Os in the high-impedance (Hi-Z) state. The disable time (tdis) indicates the delay between the time when OE goes low and when the outputs actually get disabled (Hi-Z). The enable time (ten) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

Pull-up or Pull-down Resistors on I/O Lines

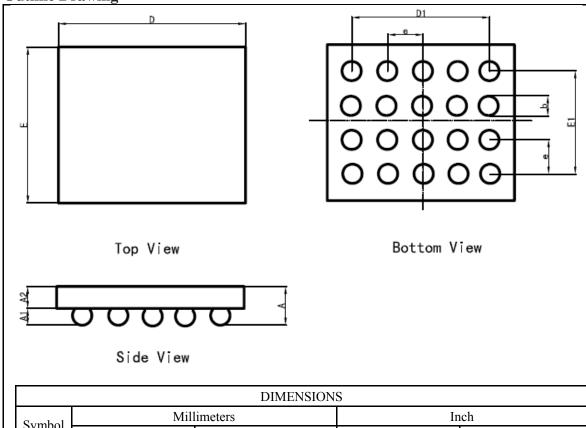
Each A-port I/O has an internal 10-k Ω pull-up resistor to V_{CCA} , and each B-port I/O has an internal 10-k Ω pull-up resistor to V_{CCB} . If a smaller value of pull-up resistor is required, an external resistor must be added from the I/O to V_{CCA} or V_{CCB} (in parallel with the internal 10-k Ω resistor).

Test Circuits

- A. C_L includes probe and jig capacitances.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

- C. All input pulses are supplied by generators having the following characteristics: $PRR \le 100MHz$, $Z_0 = 50\Omega$, $dv/dt \ge 1V/ns$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. T_{PLZ} and T_{PHZ} are the same as tdis.
- $F.\ T_{PZL}$ and T_{PZH} are the same as ten.
- G. T_{PLH} and T_{PHL} are the same as tpd.
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. V_{CCO} is the V_{CC} associated with the output port.
- J. All parameters and waveforms are not applicable to all devices.


Figure 2 Load Circuits and Voltage Waveforms

Package Information

UM3208: CSP20 3.0×2.5

Outline Drawing

DIMENSIONS				
Symbol	Millimeters		Inch	
	Min	Max	Min	Max
A		0.61		0.024
A1	0.132	0.189	0.005	0.008
A2	0.32	0.405	0.0128	0.0162
D	2.90	3.10	0.116	0.124
Е	2.40	2.60	0.096	0.104
D1	2.00BSC		0.08BSC	
E1	1.50BSC		0.06BSC	
e	0.50BSC		0.02BSC	
b	0.236	0.271	0.009	0.011

Tape and Reel Orientation

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.

Union Semiconductor, Inc

Add: 7F, No. 5, Bibo Road, Shanghai 201203

Tel: 021-51097928 Fax: 021-51026018

Website: www.union-ic.com